Kontakt
QR-Code für die aktuelle URL

Story Box-ID: 5924

Albert-Ludwigs-Universität Freiburg - Kommunikation und Presse Friedrichstraße 39 79085 Freiburg, Deutschland http://www.uni-freiburg.de
Ansprechpartner:in Frau Melanie Hübner +49 761 2034302
Logo der Firma Albert-Ludwigs-Universität Freiburg - Kommunikation und Presse
Albert-Ludwigs-Universität Freiburg - Kommunikation und Presse

Das weltkleinste Kransystem oder wie Fresszellen ihre Beute einholen

Freiburger und Heidelberger Wissenschaftler entdecken dynamische Mechanismen molekularer Motoren in Tentakeln von Makrophagen

(lifePR) (Freiburg, )
Makrophagen beziehungsweise Fresszellen sind ein Teil des Immunsystems und haben die Aufgabe, sich mittels der so genannten Phagozytose Bakterien einzuverleiben. Die Bakterien werden ins Innere der Makrophage transportiert und dann in der Regel verdaut. Um die Phagozytose flexibel studieren zu können, kann man statt Bakterien kleine Glas- oder Plastikkügelchen verwenden und diese an die Zellmembran heranführen. Als einen bemerkenswerten Mechanismus kann die Zelle hierfür Tentakel, so genannte Filopodien, ausfahren, um die präsentierte Beute einzuholen. In der aktuellen Ausgabe des Wissenschaftsmagazins Proceedings of the National Academy of Sciences (PNAS) berichten Forscher der Universität Freiburg und des Europäischen Instituts für Molekularbiologie (EMBL) in Heidelberg, wie sie mit einer optischen Pinzette winzige Plastikkugeln an die Tentakel heranfahren, ein Anbinden des Partikels an die Tentakel induzieren und deren Zurückziehen ultrapräzise in drei Dimensionen vermessen. Die Ergebnisse geben Aufschluss über mögliche Wirkungsweisen zukünftiger synthetischer Nano-Kransysteme.

Filopodien, welche auch für die Migration der Zelle eine wichtige Rolle spielen, bestehen aus parallelen Bündeln von Aktin-Filamenten, welche sich dann als Membranausstülpung in Richtung eines Kontaktpunktes schieben. Beim Zurückziehen des Filopodiums übt die Zelle Kräfte im Bereich von Pico-Newton, 10-12 Newton aus, welche nicht nur für die Zellmigration, sondern auch für das Einholen von Partikeln wie Bakterien benutzt werden. Diese Kräfte lassen sich mit einer optischen Falle sehr präzise vermessen. Eine optische Falle erzeugt man durch einen extrem gebündelten Laserfokus und kann damit – pinzettenähnlich - Partikel festhalten und verschieben. Dies geschieht nur durch Lichtkräfte, ohne die Partikel dabei mechanisch zu berühren.

Nun hat ein Team von Wissenschaftlern um Professor Alexander Rohrbach vom Institut für Mikrosystemtechnik (IMTEK) der Universität Freiburg festgestellt, dass sich die Tentakel mit den ein tausendstel Millimeter kleinen Plastikkügelchen im Schlepptau mit einer unerwarteten Dynamik zurückzogen. „Eigentlich hatten wir einen kontinuierlichen weichen Rückzug der Tentakel erwartet“, berichtet Holger Kress, welcher die Messungen und Simulationen im Rahmen seiner Doktorarbeit am EMBL in Heidelberg durchführte und nun als Postdoc an der Yale-Universität arbeitet.

„Überraschenderweise haben wir aber kleine, diskrete Schritte bei der Filopodienretraktion gemessen, welche im Mittel 36 Nanometer lang sind.“ Die Wissenschaftler wissen aus in-vitro Experimenten, dass Myosin Motorproteine, welche sich für Transportaufgaben auf Aktin entlang bewegen, in Schritten von 36 Nanometern, also tausendstel Mikrometer, laufen. „Wir gehen davon aus, dass man hier erstmalig das Laufen von molekularen Motoren im Inneren einer Zelle dreidimensional beobachten konnte“ erklärt Alexander Rohrbach, welcher sich früher am EMBL auch mit der Entwicklung des ausgefeilten Messinstruments, einem so genannten Photonischen Kraftmikroskop, beschäftigt hat.

Die molekularen Motoren versuchen das Filopodium entgegen der anliegenden Fallenkraft zurück zu ziehen und schalten umso mehr Motoren in ihr Kollektiv, je stärker die zu überwindende Kraft ist. „Erstaunlicherweise konnten wir feststellen, dass auch mehrere ziehenden Motoren noch im Gleichschritt laufen. Das heißt, die Motoren beeinflussen sich gegenseitig und werden so organisiert, dass sie immer in ausreichender Zahl zum Einsatz kommen“. Die gewonnenen Erkenntnisse, die durch mathematische Modelle gestützt werden, könnten bei der Entwicklung zukünftiger synthetischer Nano-Systeme eine Rolle spielen. „Man stelle sich ein winziges Kransystem vor, welches aus einer Hand voll Zutaten wie sie in jeder Zelle vorhanden sind, zusammenbauen lässt. Ein nanomechanisches System, welches je nach anliegenden Kräften flexibel und selbständig Aufgaben wie zum Beispiel Partikelsortierung verrichten kann.“
Für die oben stehenden Storys, das angezeigte Event bzw. das Stellenangebot sowie für das angezeigte Bild- und Tonmaterial ist allein der jeweils angegebene Herausgeber (siehe Firmeninfo bei Klick auf Bild/Titel oder Firmeninfo rechte Spalte) verantwortlich. Dieser ist in der Regel auch Urheber der Texte sowie der angehängten Bild-, Ton- und Informationsmaterialien. Die Nutzung von hier veröffentlichten Informationen zur Eigeninformation und redaktionellen Weiterverarbeitung ist in der Regel kostenfrei. Bitte klären Sie vor einer Weiterverwendung urheberrechtliche Fragen mit dem angegebenen Herausgeber. Bei Veröffentlichung senden Sie bitte ein Belegexemplar an service@lifepr.de.
Wichtiger Hinweis:

Eine systematische Speicherung dieser Daten sowie die Verwendung auch von Teilen dieses Datenbankwerks sind nur mit schriftlicher Genehmigung durch die unn | UNITED NEWS NETWORK GmbH gestattet.

unn | UNITED NEWS NETWORK GmbH 2002–2024, Alle Rechte vorbehalten

Für die oben stehenden Storys, das angezeigte Event bzw. das Stellenangebot sowie für das angezeigte Bild- und Tonmaterial ist allein der jeweils angegebene Herausgeber (siehe Firmeninfo bei Klick auf Bild/Titel oder Firmeninfo rechte Spalte) verantwortlich. Dieser ist in der Regel auch Urheber der Texte sowie der angehängten Bild-, Ton- und Informationsmaterialien. Die Nutzung von hier veröffentlichten Informationen zur Eigeninformation und redaktionellen Weiterverarbeitung ist in der Regel kostenfrei. Bitte klären Sie vor einer Weiterverwendung urheberrechtliche Fragen mit dem angegebenen Herausgeber. Bei Veröffentlichung senden Sie bitte ein Belegexemplar an service@lifepr.de.