Kontakt
QR-Code für die aktuelle URL

Story Box-ID: 541232

TU Technische Universität Kaiserslautern Gottlieb-Daimler-Straße 47 67663 Kaiserslautern, Deutschland http://www.uni-kl.de
Ansprechpartner:in Herr Thomas Jung +49 631 2052049
Logo der Firma TU Technische Universität Kaiserslautern
TU Technische Universität Kaiserslautern

Nano: nicht nur kleiner, sondern ganz anders

(lifePR) (Kaiserslautern, )
Wasser und Öl mischen sich bekanntlich nur schlecht. Dank Teflon-beschichteter Pfannen ist auch hinlänglich bekannt, dass es darüber hinaus chemische Verbindungen gibt, die sowohl Wasser als auch Öl meiden. Diese Materialien bestehen zumeist aus Fluorkohlenstoffen, also aus Verbindungen, deren aus Kohlenstoff bestehendes Grundgerüst Fluoratome anstelle der sonst weitverbreiteten Wasserstoffatome trägt. Solche fluorierte Verbindungen finden mittlerweile nicht nur im Haushalt und in vielen Industriezweigen Anwendung, sondern erfreuen sich auch in verschiedenen Wissenschaftsdisziplinen großer Beliebtheit, insbesondere als Nanostrukturen für die Erforschung von Membranproteinen. Dabei handelt es sich um Proteine, die in zellulären Membranen verankert sind und dort wichtige Aufgaben wie den Stoff- und Informationsaustausch innerhalb und zwischen Zellen ermöglichen. Aufgrund dieser wichtigen biologischen Rolle stellen Membranproteine beliebte Forschungsobjekte und einen Großteil der Wirkstoffziele von Medikamenten dar.

Fluorierte Verbindungen kommen in der Membranproteinforschung typischerweise dann zum Einsatz, wenn Wissenschaftlerinnen und Wissenschaftler auf Materialien und Nanopartikel angewiesen sind, die gegenüber ihrer Umgebung "inert" sind, also nicht mit anderen Verbindungen reagieren. Fluorkohlenstoffe erfüllen diese Bedingung in idealer Weise, und zwar sowohl bezüglich der zu untersuchenden Membranproteine, die wegen ihrer ölartigen chemischen Zusammensetzung wasserabweisend sind, als auch gegenüber wässrigen Lösungen, die üblicherweise im Labor zum Einsatz kommen. Allerdings gibt es in jüngster Zeit vermehrt Interesse an Anwendungen, bei denen eine milde, gut kontrollierbare Wechselwirkung fluorierter Nanopartikel mit Membranproteinen einer absoluten Inertheit vorzuziehen wäre. Dies ist zum Beispiel dann der Fall, wenn ein Membranprotein nach seiner Herstellung in einer Bakterienkultur mithilfe einer synthetischen chemischen Verbindung in seine korrekte Form zurückgebracht werden soll, damit es seine natürliche Funktion ausüben kann.

Mit Unterstützung durch Kolleginnen und Kollegen aus dem Fachbereich Chemie sowie der Universitäten Halle und Avignon (Frankreich) haben Biophysiker der Technischen Universität Kaiserslautern nun gezeigt, dass genau dies möglich wird, wenn Fluorkohlenstoffe mit anderen chemischen Verbindungen so kombiniert werden, dass die daraus hervorgehenden Moleküle sich von alleine zu nanometerkleinen Strukturen -sogenannten Mizellen - zusammenlagern. Im Gegensatz zu makroskopischen, also auf unserer alltäglichen Größenskala abbildbaren Objekten wie den obengenannten Teflonpfannen verfügen diese winzigen Strukturen über die Fähigkeit, ganz gezielt Kontakte mit wasserabweisenden Verbindungen herzustellen. Wie das internationale Wissenschaftlerteam kürzlich in der Fachzeitschrift Angewandte Chemie berichtet hat, kann man sich diese besondere Eigenschaft zunutze machen, um empfindliche Membranproteine kontrolliert und ohne den Einsatz konventioneller, aggressiverer Hilfsmittel in einer biologisch aktiven Form in Lösung zu halten und sie so im Labor zu untersuchen.

Originalveröffentlichung:

Deutsch: E. Frotscher, B. Danielczak, C. Vargas, A. Meister, G. Durand, S. Keller. Angew. Chem. 2015, 127, 5158–5162 (in deutscher Sprache)
Englisch: E. Frotscher, B. Danielczak, C. Vargas, A. Meister, G. Durand, S. Keller. Angew. Chem. Int. Ed. 2015, 54, 5069–5073

Links:

http://www.ncbi.nlm.nih.gov/...
http://onlinelibrary.wiley.com/...
http://onlinelibrary.wiley.com/...

Website Promotion

Website Promotion
Für die oben stehenden Storys, das angezeigte Event bzw. das Stellenangebot sowie für das angezeigte Bild- und Tonmaterial ist allein der jeweils angegebene Herausgeber (siehe Firmeninfo bei Klick auf Bild/Titel oder Firmeninfo rechte Spalte) verantwortlich. Dieser ist in der Regel auch Urheber der Texte sowie der angehängten Bild-, Ton- und Informationsmaterialien. Die Nutzung von hier veröffentlichten Informationen zur Eigeninformation und redaktionellen Weiterverarbeitung ist in der Regel kostenfrei. Bitte klären Sie vor einer Weiterverwendung urheberrechtliche Fragen mit dem angegebenen Herausgeber. Bei Veröffentlichung senden Sie bitte ein Belegexemplar an service@lifepr.de.
Wichtiger Hinweis:

Eine systematische Speicherung dieser Daten sowie die Verwendung auch von Teilen dieses Datenbankwerks sind nur mit schriftlicher Genehmigung durch die unn | UNITED NEWS NETWORK GmbH gestattet.

unn | UNITED NEWS NETWORK GmbH 2002–2024, Alle Rechte vorbehalten

Für die oben stehenden Storys, das angezeigte Event bzw. das Stellenangebot sowie für das angezeigte Bild- und Tonmaterial ist allein der jeweils angegebene Herausgeber (siehe Firmeninfo bei Klick auf Bild/Titel oder Firmeninfo rechte Spalte) verantwortlich. Dieser ist in der Regel auch Urheber der Texte sowie der angehängten Bild-, Ton- und Informationsmaterialien. Die Nutzung von hier veröffentlichten Informationen zur Eigeninformation und redaktionellen Weiterverarbeitung ist in der Regel kostenfrei. Bitte klären Sie vor einer Weiterverwendung urheberrechtliche Fragen mit dem angegebenen Herausgeber. Bei Veröffentlichung senden Sie bitte ein Belegexemplar an service@lifepr.de.